Numerical operations on arrays#

Hide code cell source

import numpy as np
import matplotlib.pyplot as plt

Elementwise operations#

Basic operations#

With scalars:

a = np.array([1, 2, 3, 4])
a + 1
array([2, 3, 4, 5])
2 ** a
array([ 2,  4,  8, 16])

All arithmetic operates elementwise:

b = np.ones(4) + 1
a - b
array([-1.,  0.,  1.,  2.])
a * b
array([2., 4., 6., 8.])
j = np.arange(5)
2**(j + 1) - j
array([ 2,  3,  6, 13, 28])

These operations are of course much faster than if you did them in pure python:

a = np.arange(10000)
%timeit a + 1
3.46 μs ± 98.6 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
l = range(10000)
%timeit [i+1 for i in l]
600 μs ± 14.5 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Warning: array multiplication is not matrix multiplication

Consider these examples:

c = np.ones((3, 3))
c * c                   # NOT matrix multiplication!
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])

Matrix multiplication:

c @ c
array([[3., 3., 3.],
       [3., 3., 3.],
       [3., 3., 3.]])

Other operations#

Comparisons#

a = np.array([1, 2, 3, 4])
b = np.array([4, 2, 2, 4])
a == b
array([False,  True, False,  True])
a > b
array([False, False,  True, False])

Array-wise comparisons:

a = np.array([1, 2, 3, 4])
b = np.array([4, 2, 2, 4])
c = np.array([1, 2, 3, 4])
np.array_equal(a, b)
False
np.array_equal(a, c)
True

Logical operations#

a = np.array([1, 1, 0, 0], dtype=bool)
b = np.array([1, 0, 1, 0], dtype=bool)
np.logical_or(a, b)
array([ True,  True,  True, False])
np.logical_and(a, b)
array([ True, False, False, False])

Transcendental functions#

a = np.arange(5)
np.sin(a)
array([ 0.        ,  0.84147098,  0.90929743,  0.14112001, -0.7568025 ])
np.exp(a)
array([ 1.        ,  2.71828183,  7.3890561 , 20.08553692, 54.59815003])
np.log(np.exp(a))
array([0., 1., 2., 3., 4.])

Shape mismatches#

a = np.arange(4)
a + np.array([1, 2])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[20], line 2
      1 a = np.arange(4)
----> 2 a + np.array([1, 2])

ValueError: operands could not be broadcast together with shapes (4,) (2,) 

Broadcasting? We’ll return to that later.

Transposition#

a = np.triu(np.ones((3, 3)), 1)   # see help(np.triu)
a
array([[0., 1., 1.],
       [0., 0., 1.],
       [0., 0., 0.]])
a.T
array([[0., 0., 0.],
       [1., 0., 0.],
       [1., 1., 0.]])

Remember, the transposition is a view.

The transpose returns a view of the original array:

a = np.arange(9).reshape(3, 3)
a.T[0, 2] = 999
a.T
array([[  0,   3, 999],
       [  1,   4,   7],
       [  2,   5,   8]])
a
array([[  0,   1,   2],
       [  3,   4,   5],
       [999,   7,   8]])

Linear algebra#

The sub-module numpy.linalg implements basic linear algebra, such as solving linear systems, singular value decomposition, etc. However, it is not guaranteed to be compiled using efficient routines, and thus we recommend the use of scipy.linalg, as detailed in section Linear algebra operations: scipy.linalg

Basic reductions#

Computing sums#

x = np.array([1, 2, 3, 4])
np.sum(x)
np.int64(10)
x.sum()
np.int64(10)

Sum by rows and by columns:

x = np.array([[1, 1], [2, 2]])
x
array([[1, 1],
       [2, 2]])
x.sum(axis=0)   # columns (first dimension)
array([3, 3])
x[:, 0].sum(), x[:, 1].sum()
(np.int64(3), np.int64(3))
x.sum(axis=1)   # rows (second dimension)
array([2, 4])
x[0, :].sum(), x[1, :].sum()
(np.int64(2), np.int64(4))

Here is the same idea in higher dimensions:

rng = np.random.default_rng(27446968)
x = rng.random((2, 2, 2))
x.sum(axis=2)[0, 1]
np.float64(0.7341517644004746)
x[0, 1, :].sum()
np.float64(0.7341517644004746)

Other reductions#

These work the same way (and take axis=)

Extrema#

x = np.array([1, 3, 2])
x.min()
np.int64(1)
x.max()
np.int64(3)
x.argmin()  # index of minimum
np.int64(0)
x.argmax()  # index of maximum
np.int64(1)

Logical operations#

np.all([True, True, False])
np.False_
np.any([True, True, False])
np.True_

This can be used for array comparisons:

a = np.zeros((100, 100))
np.any(a != 0)
np.False_
np.all(a == a)
np.True_
a = np.array([1, 2, 3, 2])
b = np.array([2, 2, 3, 2])
c = np.array([6, 4, 4, 5])
((a <= b) & (b <= c)).all()
np.True_

Statistics:

x = np.array([1, 2, 3, 1])
y = np.array([[1, 2, 3], [5, 6, 1]])
x.mean()
np.float64(1.75)
np.median(x)
np.float64(1.5)
np.median(y, axis=-1) # last axis
array([2., 5.])
x.std()          # full population standard dev.
np.float64(0.82915619758885)

… and many more (best to learn as you go).

Worked Example: diffusion using a random walk algorithm#

Let us consider a simple 1D random walk process: at each time step a walker jumps right or left with equal probability.

We are interested in finding the typical distance from the origin of a random walker after t left or right jumps? We are going to simulate many “walkers” to find this law, and we are going to do so using array computing tricks: we are going to create a 2D array with the “stories” (each walker has a story) in one direction, and the time in the other:

n_stories = 1000 # number of walkers
t_max = 200      # time during which we follow the walker

We randomly choose all the steps 1 or -1 of the walk:

t = np.arange(t_max)
rng = np.random.default_rng()
steps = 2 * rng.integers(0, 1 + 1, (n_stories, t_max)) - 1 # +1 because the high value is exclusive
np.unique(steps) # Verification: all steps are 1 or -1
array([-1,  1])

We build the walks by summing steps along the time:

positions = np.cumsum(steps, axis=1) # axis = 1: dimension of time
sq_distance = positions**2

We get the mean in the axis of the stories:

mean_sq_distance = np.mean(sq_distance, axis=0)

Plot the results:

plt.figure(figsize=(4, 3))
plt.plot(t, np.sqrt(mean_sq_distance), 'g.', t, np.sqrt(t), 'y-')
plt.xlabel(r"$t$")
plt.ylabel(r"$\sqrt{\langle (\delta x)^2 \rangle}$")
plt.tight_layout() # provide sufficient space for labels
../../_images/862f3715deceaca452ffc88f80e1cae61ce84c4e3a92addaf1c33a03cf8a0c51.png

We find a well-known result in physics: the Root Mean Square (RMS) distance grows as the square root of the time!

Interim summary and exercises#

Operation type

Numpy functions

arithmetic

sum, prod, mean, std

Extrema

min, max

logical

all, any

Also, recall the axis argument to select the dimension over which an operation will be applied:

arr = np.array([[99, 12], [11, 2]])
arr
array([[99, 12],
       [11,  2]])
# Without axis=, operation applied over whole (flatted, 1D) array.
np.min(arr)
np.int64(2)
# Operate along first axis (rows).
np.min(arr, axis=0)
array([11,  2])
# Operate along second axis (columns).
np.min(arr, axis=1)
array([12,  2])

Broadcasting#

  • Basic operations on numpy arrays (addition, etc.) are elementwise

  • This works on arrays of the same size.

  • Nevertheless , it’s also possible to do operations on arrays of different sizes if NumPy can transform these arrays so that they all have the same size: this conversion is called broadcasting.

The image below gives an example of broadcasting:

Let’s verify:

a = np.tile(np.arange(0, 40, 10), (3, 1)).T
a
array([[ 0,  0,  0],
       [10, 10, 10],
       [20, 20, 20],
       [30, 30, 30]])
b = np.array([0, 1, 2])
a + b
array([[ 0,  1,  2],
       [10, 11, 12],
       [20, 21, 22],
       [30, 31, 32]])

We have already used broadcasting without knowing it!:

a = np.ones((4, 5))
a[0] = 2  # we assign an array of dimension 0 to an array of dimension 1
a
array([[2., 2., 2., 2., 2.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.]])

A useful trick:

a = np.arange(0, 40, 10)
a.shape
(4,)
a = a[:, np.newaxis]  # adds a new axis -> 2D array
a.shape
(4, 1)
a
array([[ 0],
       [10],
       [20],
       [30]])
a + b
array([[ 0,  1,  2],
       [10, 11, 12],
       [20, 21, 22],
       [30, 31, 32]])

Worked Example: Broadcasting#

Let’s construct an array of distances (in miles) between cities of Route 66: Chicago, Springfield, Saint-Louis, Tulsa, Oklahoma City, Amarillo, Santa Fe, Albuquerque, Flagstaff and Los Angeles.

mileposts = np.array([0, 198, 303, 736, 871, 1175, 1475, 1544,
       1913, 2448])
distance_array = np.abs(mileposts - mileposts[:, np.newaxis])
distance_array
array([[   0,  198,  303,  736,  871, 1175, 1475, 1544, 1913, 2448],
       [ 198,    0,  105,  538,  673,  977, 1277, 1346, 1715, 2250],
       [ 303,  105,    0,  433,  568,  872, 1172, 1241, 1610, 2145],
       [ 736,  538,  433,    0,  135,  439,  739,  808, 1177, 1712],
       [ 871,  673,  568,  135,    0,  304,  604,  673, 1042, 1577],
       [1175,  977,  872,  439,  304,    0,  300,  369,  738, 1273],
       [1475, 1277, 1172,  739,  604,  300,    0,   69,  438,  973],
       [1544, 1346, 1241,  808,  673,  369,   69,    0,  369,  904],
       [1913, 1715, 1610, 1177, 1042,  738,  438,  369,    0,  535],
       [2448, 2250, 2145, 1712, 1577, 1273,  973,  904,  535,    0]])

A lot of grid-based or network-based problems can also use broadcasting. For instance, if we want to compute the distance from the origin of points on a 5x5 grid, we can do

x, y = np.arange(5), np.arange(5)[:, np.newaxis]
distance = np.sqrt(x ** 2 + y ** 2)
distance
array([[0.        , 1.        , 2.        , 3.        , 4.        ],
       [1.        , 1.41421356, 2.23606798, 3.16227766, 4.12310563],
       [2.        , 2.23606798, 2.82842712, 3.60555128, 4.47213595],
       [3.        , 3.16227766, 3.60555128, 4.24264069, 5.        ],
       [4.        , 4.12310563, 4.47213595, 5.        , 5.65685425]])

Or in color:

plt.pcolor(distance)
plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x11482f7d0>
../../_images/292a777ef6206e42729a890444cd0701998aefc52b70e56058c0f7574a8d66ec.png

Remark : the numpy.ogrid() function allows to directly create vectors x and y of the previous example, with two “significant dimensions”:

x, y = np.ogrid[0:5, 0:5]
x, y
(array([[0],
        [1],
        [2],
        [3],
        [4]]),
 array([[0, 1, 2, 3, 4]]))
x.shape, y.shape
distance = np.sqrt(x ** 2 + y ** 2)

So, np.ogrid is very useful as soon as we have to handle computations on a grid. On the other hand, np.mgrid directly provides matrices full of indices for cases where we can’t (or don’t want to) benefit from broadcasting:

x, y = np.mgrid[0:4, 0:4]
x
array([[0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2],
       [3, 3, 3, 3]])
y
array([[0, 1, 2, 3],
       [0, 1, 2, 3],
       [0, 1, 2, 3],
       [0, 1, 2, 3]])

See also

Broadcasting: discussion of broadcasting in the Advanced NumPy chapter.

Array shape manipulation#

Flattening#

a = np.array([[1, 2, 3], [4, 5, 6]])
a.ravel()
array([1, 2, 3, 4, 5, 6])
a.T
array([[1, 4],
       [2, 5],
       [3, 6]])
a.T.ravel()
array([1, 4, 2, 5, 3, 6])

Higher dimensions: last dimensions ravel out “first”.

Reshaping#

The inverse operation to flattening:

a.shape
(2, 3)
b = a.ravel()
b = b.reshape((2, 3))
b
array([[1, 2, 3],
       [4, 5, 6]])

Or,

a.reshape((2, -1))    # unspecified (-1) value is inferred
array([[1, 2, 3],
       [4, 5, 6]])

Warning

ndarray.reshape may return a view (cf help(np.reshape))), or copy

For example, consider:

b[0, 0] = 99
a
array([[99,  2,  3],
       [ 4,  5,  6]])

Beware: reshape may also return a copy!:

a = np.zeros((3, 2))
b = a.T.reshape(3*2)
b[0] = 9
a
array([[0., 0.],
       [0., 0.],
       [0., 0.]])

To understand this you need to learn more about the memory layout of a NumPy array.

Adding a dimension#

Indexing with the np.newaxis object allows us to add an axis to an array (you have seen this already above in the broadcasting section):

z = np.array([1, 2, 3])
z
array([1, 2, 3])
z[:, np.newaxis]
array([[1],
       [2],
       [3]])
z[np.newaxis, :]
array([[1, 2, 3]])

Dimension shuffling#

a = np.arange(4*3*2).reshape(4, 3, 2)
a.shape
(4, 3, 2)
a[0, 2, 1]
np.int64(5)
b = a.transpose(1, 2, 0)
b.shape
(3, 2, 4)
b[2, 1, 0]
np.int64(5)

Also creates a view:

b[2, 1, 0] = -1
a[0, 2, 1]
np.int64(-1)

Resizing#

Size of an array can be changed with ndarray.resize:

a = np.arange(4)
a.resize((8,))
a
array([0, 1, 2, 3, 0, 0, 0, 0])

However, it must not be referred to somewhere else:

b = a
a.resize((4,))
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[90], line 2
      1 b = a
----> 2 a.resize((4,))

ValueError: cannot resize an array that references or is referenced
by another array in this way.
Use the np.resize function or refcheck=False

Sorting data#

Sorting along an axis:

a = np.array([[4, 3, 5], [1, 2, 1]])
b = np.sort(a, axis=1)
b
array([[3, 4, 5],
       [1, 1, 2]])

Note

Sorts each row separately!

In-place sort:

a.sort(axis=1)
a
array([[3, 4, 5],
       [1, 1, 2]])

Sorting with fancy indexing:

a = np.array([4, 3, 1, 2])
j = np.argsort(a)
j
array([2, 3, 1, 0])
a[j]
array([1, 2, 3, 4])

Finding minima and maxima:

a = np.array([4, 3, 1, 2])
j_max = np.argmax(a)
j_min = np.argmin(a)
j_max, j_min
(np.int64(0), np.int64(2))

Summary#

What do you need to know to get started?

  • Know how to create arrays : array, arange, ones, zeros.

  • Know the shape of the array with array.shape, then use slicing to obtain different views of the array: array[::2], etc. Adjust the shape of the array using reshape or flatten it with ravel.

  • Obtain a subset of the elements of an array and/or modify their values with masks, with e.g.:

    a[a < 0] = 0
    
  • Know miscellaneous operations on arrays, such as finding the mean or max (array.max(), array.mean()). No need to retain everything, but have the reflex to search in the documentation (online docs, help())!!

  • For advanced use: master the indexing with arrays of integers, as well as broadcasting. Know more NumPy functions to handle various array operations.

Quick read

If you want to do a first quick pass through the Scientific Python Lectures to learn the ecosystem, you can directly skip to the next chapter: Matplotlib: plotting.

The remainder of this chapter is not necessary to follow the rest of the intro part. But be sure to come back and finish this chapter, as well as to do some more exercises.