_gohlketransforms

Homogeneous Transformation Matrices and Quaternions.

A library for calculating 4x4 matrices for translating, rotating, reflecting, scaling, shearing, projecting, orthogonalizing, and superimposing arrays of 3D homogeneous coordinates as well as for converting between rotation matrices, Euler angles, and quaternions. Also includes an Arcball control object and functions to decompose transformation matrices.

Author

Christoph Gohlke

Organization

Laboratory for Fluorescence Dynamics, University of California, Irvine

Version

2017.02.17

Requirements

Notes

The API is not stable yet and is expected to change between revisions.

This Python code is not optimized for speed. Refer to the transformations.c module for a faster implementation of some functions.

Documentation in HTML format can be generated with epydoc.

Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using numpy.dot(M, v) for shape (4, *) column vectors, respectively numpy.dot(v, M.T) for shape (*, 4) row vectors (“array of points”).

This module follows the “column vectors on the right” and “row major storage” (C contiguous) conventions. The translation components are in the right column of the transformation matrix, i.e. M[:3, 3]. The transpose of the transformation matrices may have to be used to interface with other graphics systems, e.g. with OpenGL’s glMultMatrixd(). See also [16].

Calculations are carried out with numpy.float64 precision.

Vector, point, quaternion, and matrix function arguments are expected to be “array like”, i.e. tuple, list, or numpy arrays.

Return types are numpy arrays unless specified otherwise.

Angles are in radians unless specified otherwise.

Quaternions w+ix+jy+kz are represented as [w, x, y, z].

A triple of Euler angles can be applied/interpreted in 24 ways, which can be specified using a 4 character string or encoded 4-tuple:

Axes 4-string: e.g. ‘sxyz’ or ‘ryxy’

  • first character : rotations are applied to ‘s’tatic or ‘r’otating frame

  • remaining characters : successive rotation axis ‘x’, ‘y’, or ‘z’

Axes 4-tuple: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)

  • inner axis: code of axis (‘x’:0, ‘y’:1, ‘z’:2) of rightmost matrix.

  • parity : even (0) if inner axis ‘x’ is followed by ‘y’, ‘y’ is followed by ‘z’, or ‘z’ is followed by ‘x’. Otherwise odd (1).

  • repetition : first and last axis are same (1) or different (0).

  • frame : rotations are applied to static (0) or rotating (1) frame.

Other Python packages and modules for 3D transformations and quaternions:

References

  1. Matrices and transformations. Ronald Goldman. In “Graphics Gems I”, pp 472-475. Morgan Kaufmann, 1990.

  2. More matrices and transformations: shear and pseudo-perspective. Ronald Goldman. In “Graphics Gems II”, pp 320-323. Morgan Kaufmann, 1991.

  3. Decomposing a matrix into simple transformations. Spencer Thomas. In “Graphics Gems II”, pp 320-323. Morgan Kaufmann, 1991.

  4. Recovering the data from the transformation matrix. Ronald Goldman. In “Graphics Gems II”, pp 324-331. Morgan Kaufmann, 1991.

  5. Euler angle conversion. Ken Shoemake. In “Graphics Gems IV”, pp 222-229. Morgan Kaufmann, 1994.

  6. Arcball rotation control. Ken Shoemake. In “Graphics Gems IV”, pp 175-192. Morgan Kaufmann, 1994.

  7. Representing attitude: Euler angles, unit quaternions, and rotation vectors. James Diebel. 2006.

  8. A discussion of the solution for the best rotation to relate two sets of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.

  9. Closed-form solution of absolute orientation using unit quaternions. BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642.

  10. Quaternions. Ken Shoemake. http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf

  11. From quaternion to matrix and back. JMP van Waveren. 2005. http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm

  12. Uniform random rotations. Ken Shoemake. In “Graphics Gems III”, pp 124-132. Morgan Kaufmann, 1992.

  13. Quaternion in molecular modeling. CFF Karney. J Mol Graph Mod, 25(5):595-604

  14. New method for extracting the quaternion from a rotation matrix. Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087.

  15. Multiple View Geometry in Computer Vision. Hartley and Zissermann. Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130.

  16. Column Vectors vs. Row Vectors. http://steve.hollasch.net/cgindex/math/matrix/column-vec.html

Examples

>>> alpha, beta, gamma = 0.123, -1.234, 2.345
>>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]
>>> I = identity_matrix()
>>> Rx = rotation_matrix(alpha, xaxis)
>>> Ry = rotation_matrix(beta, yaxis)
>>> Rz = rotation_matrix(gamma, zaxis)
>>> R = concatenate_matrices(Rx, Ry, Rz)
>>> euler = euler_from_matrix(R, 'rxyz')
>>> numpy.allclose([alpha, beta, gamma], euler)
True
>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
>>> is_same_transform(R, Re)
True
>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
True
>>> qx = quaternion_about_axis(alpha, xaxis)
>>> qy = quaternion_about_axis(beta, yaxis)
>>> qz = quaternion_about_axis(gamma, zaxis)
>>> q = quaternion_multiply(qx, qy)
>>> q = quaternion_multiply(q, qz)
>>> Rq = quaternion_matrix(q)
>>> is_same_transform(R, Rq)
True
>>> S = scale_matrix(1.23, origin)
>>> T = translation_matrix([1, 2, 3])
>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
>>> R = random_rotation_matrix(numpy.random.rand(3))
>>> M = concatenate_matrices(T, R, Z, S)
>>> scale, shear, angles, trans, persp = decompose_matrix(M)
>>> numpy.allclose(scale, 1.23)
True
>>> numpy.allclose(trans, [1, 2, 3])
True
>>> numpy.allclose(shear, [0, math.tan(beta), 0])
True
>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
True
>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
>>> is_same_transform(M, M1)
True
>>> v0, v1 = random_vector(3), random_vector(3)
>>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1))
>>> v2 = numpy.dot(v0, M[:3,:3].T)
>>> numpy.allclose(unit_vector(v1), unit_vector(v2))
True

Arcball([initial])

Virtual Trackball Control.

affine_matrix_from_points(v0, v1[, shear, …])

Return affine transform matrix to register two point sets.

angle_between_vectors(v0, v1[, directed, axis])

Return angle between vectors.

arcball_constrain_to_axis(point, axis)

Return sphere point perpendicular to axis.

arcball_map_to_sphere(point, center, radius)

Return unit sphere coordinates from window coordinates.

arcball_nearest_axis(point, axes)

Return axis, which arc is nearest to point.

clip_matrix(left, right, bottom, top, near, far)

Return matrix to obtain normalized device coordinates from frustum.

compose_matrix([scale, shear, angles, …])

Return transformation matrix from sequence of transformations.

concatenate_matrices(*matrices)

Return concatenation of series of transformation matrices.

decompose_matrix(matrix)

Return sequence of transformations from transformation matrix.

euler_from_matrix(matrix[, axes])

Return Euler angles from rotation matrix for specified axis sequence.

euler_from_quaternion(quaternion[, axes])

Return Euler angles from quaternion for specified axis sequence.

euler_matrix(ai, aj, ak[, axes])

Return homogeneous rotation matrix from Euler angles and axis sequence.

identity_matrix()

Return 4x4 identity/unit matrix.

inverse_matrix(matrix)

Return inverse of square transformation matrix.

is_same_quaternion(q0, q1)

Return True if two quaternions are equal.

is_same_transform(matrix0, matrix1)

Return True if two matrices perform same transformation.

orthogonalization_matrix(lengths, angles)

Return orthogonalization matrix for crystallographic cell coordinates.

projection_from_matrix(matrix[, pseudo])

Return projection plane and perspective point from projection matrix.

projection_matrix(point, normal[, …])

Return matrix to project onto plane defined by point and normal.

quaternion_about_axis(angle, axis)

Return quaternion for rotation about axis.

quaternion_conjugate(quaternion)

Return conjugate of quaternion.

quaternion_from_euler(ai, aj, ak[, axes])

Return quaternion from Euler angles and axis sequence.

quaternion_from_matrix(matrix[, isprecise])

Return quaternion from rotation matrix.

quaternion_imag(quaternion)

Return imaginary part of quaternion.

quaternion_inverse(quaternion)

Return inverse of quaternion.

quaternion_matrix(quaternion)

Return homogeneous rotation matrix from quaternion.

quaternion_multiply(quaternion1, quaternion0)

Return multiplication of two quaternions.

quaternion_real(quaternion)

Return real part of quaternion.

quaternion_slerp(quat0, quat1, fraction[, …])

Return spherical linear interpolation between two quaternions.

random_quaternion([rand])

Return uniform random unit quaternion.

random_rotation_matrix([rand])

Return uniform random rotation matrix.

random_vector(size)

Return array of random doubles in the half-open interval [0.0, 1.0).

reflection_from_matrix(matrix)

Return mirror plane point and normal vector from reflection matrix.

reflection_matrix(point, normal)

Return matrix to mirror at plane defined by point and normal vector.

rotation_from_matrix(matrix)

Return rotation angle and axis from rotation matrix.

rotation_matrix(angle, direction[, point])

Return matrix to rotate about axis defined by point and direction.

scale_from_matrix(matrix)

Return scaling factor, origin and direction from scaling matrix.

scale_matrix(factor[, origin, direction])

Return matrix to scale by factor around origin in direction.

shear_from_matrix(matrix)

Return shear angle, direction and plane from shear matrix.

shear_matrix(angle, direction, point, normal)

Return matrix to shear by angle along direction vector on shear plane.

superimposition_matrix(v0, v1[, scale, usesvd])

Return matrix to transform given 3D point set into second point set.

translation_from_matrix(matrix)

Return translation vector from translation matrix.

translation_matrix(direction)

Return matrix to translate by direction vector.

unit_vector(data[, axis, out])

Return ndarray normalized by length, i.e. Euclidean norm, along axis.

vector_norm(data[, axis, out])

Return length, i.e. Euclidean norm, of ndarray along axis.

vector_product(v0, v1[, axis])

Return vector perpendicular to vectors.

Arcball

class transforms3d._gohlketransforms.Arcball(initial=None)

Bases: object

Virtual Trackball Control.

>>> ball = Arcball()
>>> ball = Arcball(initial=numpy.identity(4))
>>> ball.place([320, 320], 320)
>>> ball.down([500, 250])
>>> ball.drag([475, 275])
>>> R = ball.matrix()
>>> numpy.allclose(numpy.sum(R), 3.90583455)
True
>>> ball = Arcball(initial=[1, 0, 0, 0])
>>> ball.place([320, 320], 320)
>>> ball.setaxes([1, 1, 0], [-1, 1, 0])
>>> ball.constrain = True
>>> ball.down([400, 200])
>>> ball.drag([200, 400])
>>> R = ball.matrix()
>>> numpy.allclose(numpy.sum(R), 0.2055924)
True
>>> ball.next()
__init__(initial=None)

Initialize virtual trackball control.

initial : quaternion or rotation matrix

property constrain

Return state of constrain to axis mode.

down(point)

Set initial cursor window coordinates and pick constrain-axis.

drag(point)

Update current cursor window coordinates.

matrix()

Return homogeneous rotation matrix.

next(acceleration=0.0)

Continue rotation in direction of last drag.

place(center, radius)

Place Arcball, e.g. when window size changes.

centersequence[2]

Window coordinates of trackball center.

radiusfloat

Radius of trackball in window coordinates.

setaxes(*axes)

Set axes to constrain rotations.

affine_matrix_from_points

transforms3d._gohlketransforms.affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True)

Return affine transform matrix to register two point sets.

v0 and v1 are shape (ndims, *) arrays of at least ndims non-homogeneous coordinates, where ndims is the dimensionality of the coordinate space.

If shear is False, a similarity transformation matrix is returned. If also scale is False, a rigid/Euclidean transformation matrix is returned.

By default the algorithm by Hartley and Zissermann [15] is used. If usesvd is True, similarity and Euclidean transformation matrices are calculated by minimizing the weighted sum of squared deviations (RMSD) according to the algorithm by Kabsch [8]. Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9] is used, which is slower when using this Python implementation.

The returned matrix performs rotation, translation and uniform scaling (if specified).

>>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]]
>>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]]
>>> affine_matrix_from_points(v0, v1)
array([[   0.14549,    0.00062,  675.50008],
       [   0.00048,    0.14094,   53.24971],
       [   0.     ,    0.     ,    1.     ]])
>>> T = translation_matrix(numpy.random.random(3)-0.5)
>>> R = random_rotation_matrix(numpy.random.random(3))
>>> S = scale_matrix(random.random())
>>> M = concatenate_matrices(T, R, S)
>>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
>>> v0[3] = 1
>>> v1 = numpy.dot(M, v0)
>>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1)
>>> M = affine_matrix_from_points(v0[:3], v1[:3])
>>> numpy.allclose(v1, numpy.dot(M, v0))
True

More examples in superimposition_matrix()

angle_between_vectors

transforms3d._gohlketransforms.angle_between_vectors(v0, v1, directed=True, axis=0)

Return angle between vectors.

If directed is False, the input vectors are interpreted as undirected axes, i.e. the maximum angle is pi/2.

>>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3])
>>> numpy.allclose(a, math.pi)
True
>>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False)
>>> numpy.allclose(a, 0)
True
>>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
>>> v1 = [[3], [0], [0]]
>>> a = angle_between_vectors(v0, v1)
>>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532])
True
>>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
>>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
>>> a = angle_between_vectors(v0, v1, axis=1)
>>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532])
True

arcball_constrain_to_axis

transforms3d._gohlketransforms.arcball_constrain_to_axis(point, axis)

Return sphere point perpendicular to axis.

arcball_map_to_sphere

transforms3d._gohlketransforms.arcball_map_to_sphere(point, center, radius)

Return unit sphere coordinates from window coordinates.

arcball_nearest_axis

transforms3d._gohlketransforms.arcball_nearest_axis(point, axes)

Return axis, which arc is nearest to point.

clip_matrix

transforms3d._gohlketransforms.clip_matrix(left, right, bottom, top, near, far, perspective=False)

Return matrix to obtain normalized device coordinates from frustum.

The frustum bounds are axis-aligned along x (left, right), y (bottom, top) and z (near, far).

Normalized device coordinates are in range [-1, 1] if coordinates are inside the frustum.

If perspective is True the frustum is a truncated pyramid with the perspective point at origin and direction along z axis, otherwise an orthographic canonical view volume (a box).

Homogeneous coordinates transformed by the perspective clip matrix need to be dehomogenized (divided by w coordinate).

>>> frustum = numpy.random.rand(6)
>>> frustum[1] += frustum[0]
>>> frustum[3] += frustum[2]
>>> frustum[5] += frustum[4]
>>> M = clip_matrix(perspective=False, *frustum)
>>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
array([-1., -1., -1.,  1.])
>>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1])
array([ 1.,  1.,  1.,  1.])
>>> M = clip_matrix(perspective=True, *frustum)
>>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
>>> v / v[3]
array([-1., -1., -1.,  1.])
>>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1])
>>> v / v[3]
array([ 1.,  1., -1.,  1.])

compose_matrix

transforms3d._gohlketransforms.compose_matrix(scale=None, shear=None, angles=None, translate=None, perspective=None)

Return transformation matrix from sequence of transformations.

This is the inverse of the decompose_matrix function.

Sequence of transformations:

scale : vector of 3 scaling factors shear : list of shear factors for x-y, x-z, y-z axes angles : list of Euler angles about static x, y, z axes translate : translation vector along x, y, z axes perspective : perspective partition of matrix

>>> scale = numpy.random.random(3) - 0.5
>>> shear = numpy.random.random(3) - 0.5
>>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
>>> trans = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(4) - 0.5
>>> M0 = compose_matrix(scale, shear, angles, trans, persp)
>>> result = decompose_matrix(M0)
>>> M1 = compose_matrix(*result)
>>> is_same_transform(M0, M1)
True

concatenate_matrices

transforms3d._gohlketransforms.concatenate_matrices(*matrices)

Return concatenation of series of transformation matrices.

>>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
>>> numpy.allclose(M, concatenate_matrices(M))
True
>>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
True

decompose_matrix

transforms3d._gohlketransforms.decompose_matrix(matrix)

Return sequence of transformations from transformation matrix.

matrixarray_like

Non-degenerative homogeneous transformation matrix

Return tuple of:

scale : vector of 3 scaling factors shear : list of shear factors for x-y, x-z, y-z axes angles : list of Euler angles about static x, y, z axes translate : translation vector along x, y, z axes perspective : perspective partition of matrix

Raise ValueError if matrix is of wrong type or degenerative.

>>> T0 = translation_matrix([1, 2, 3])
>>> scale, shear, angles, trans, persp = decompose_matrix(T0)
>>> T1 = translation_matrix(trans)
>>> numpy.allclose(T0, T1)
True
>>> S = scale_matrix(0.123)
>>> scale, shear, angles, trans, persp = decompose_matrix(S)
>>> scale[0]
0.123
>>> R0 = euler_matrix(1, 2, 3)
>>> scale, shear, angles, trans, persp = decompose_matrix(R0)
>>> R1 = euler_matrix(*angles)
>>> numpy.allclose(R0, R1)
True

euler_from_matrix

transforms3d._gohlketransforms.euler_from_matrix(matrix, axes='sxyz')

Return Euler angles from rotation matrix for specified axis sequence.

axes : One of 24 axis sequences as string or encoded tuple

Note that many Euler angle triplets can describe one matrix.

>>> R0 = euler_matrix(1, 2, 3, 'syxz')
>>> al, be, ga = euler_from_matrix(R0, 'syxz')
>>> R1 = euler_matrix(al, be, ga, 'syxz')
>>> numpy.allclose(R0, R1)
True
>>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5)
>>> for axes in _AXES2TUPLE.keys():
...    R0 = euler_matrix(axes=axes, *angles)
...    R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
...    if not numpy.allclose(R0, R1): print(axes, "failed")

euler_from_quaternion

transforms3d._gohlketransforms.euler_from_quaternion(quaternion, axes='sxyz')

Return Euler angles from quaternion for specified axis sequence.

>>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0])
>>> numpy.allclose(angles, [0.123, 0, 0])
True

euler_matrix

transforms3d._gohlketransforms.euler_matrix(ai, aj, ak, axes='sxyz')

Return homogeneous rotation matrix from Euler angles and axis sequence.

ai, aj, ak : Euler’s roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple

>>> R = euler_matrix(1, 2, 3, 'syxz')
>>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
True
>>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
>>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
True
>>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5)
>>> for axes in _AXES2TUPLE.keys():
...    R = euler_matrix(ai, aj, ak, axes)
>>> for axes in _TUPLE2AXES.keys():
...    R = euler_matrix(ai, aj, ak, axes)

identity_matrix

transforms3d._gohlketransforms.identity_matrix()

Return 4x4 identity/unit matrix.

>>> I = identity_matrix()
>>> numpy.allclose(I, numpy.dot(I, I))
True
>>> numpy.sum(I), numpy.trace(I)
(4.0, 4.0)
>>> numpy.allclose(I, numpy.identity(4))
True

inverse_matrix

transforms3d._gohlketransforms.inverse_matrix(matrix)

Return inverse of square transformation matrix.

>>> M0 = random_rotation_matrix()
>>> M1 = inverse_matrix(M0.T)
>>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
True
>>> for size in range(1, 7):
...     M0 = numpy.random.rand(size, size)
...     M1 = inverse_matrix(M0)
...     if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size)

is_same_quaternion

transforms3d._gohlketransforms.is_same_quaternion(q0, q1)

Return True if two quaternions are equal.

is_same_transform

transforms3d._gohlketransforms.is_same_transform(matrix0, matrix1)

Return True if two matrices perform same transformation.

>>> is_same_transform(numpy.identity(4), numpy.identity(4))
True
>>> is_same_transform(numpy.identity(4), random_rotation_matrix())
False

orthogonalization_matrix

transforms3d._gohlketransforms.orthogonalization_matrix(lengths, angles)

Return orthogonalization matrix for crystallographic cell coordinates.

Angles are expected in degrees.

The de-orthogonalization matrix is the inverse.

>>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
>>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
True
>>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
>>> numpy.allclose(numpy.sum(O), 43.063229)
True

projection_from_matrix

transforms3d._gohlketransforms.projection_from_matrix(matrix, pseudo=False)

Return projection plane and perspective point from projection matrix.

Return values are same as arguments for projection_matrix function: point, normal, direction, perspective, and pseudo.

>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(3) - 0.5
>>> P0 = projection_matrix(point, normal)
>>> result = projection_from_matrix(P0)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, direct)
>>> result = projection_from_matrix(P0)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
>>> result = projection_from_matrix(P0, pseudo=False)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
>>> result = projection_from_matrix(P0, pseudo=True)
>>> P1 = projection_matrix(*result)
>>> is_same_transform(P0, P1)
True

projection_matrix

transforms3d._gohlketransforms.projection_matrix(point, normal, direction=None, perspective=None, pseudo=False)

Return matrix to project onto plane defined by point and normal.

Using either perspective point, projection direction, or none of both.

If pseudo is True, perspective projections will preserve relative depth such that Perspective = dot(Orthogonal, PseudoPerspective).

>>> P = projection_matrix([0, 0, 0], [1, 0, 0])
>>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
True
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> persp = numpy.random.random(3) - 0.5
>>> P0 = projection_matrix(point, normal)
>>> P1 = projection_matrix(point, normal, direction=direct)
>>> P2 = projection_matrix(point, normal, perspective=persp)
>>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
>>> is_same_transform(P2, numpy.dot(P0, P3))
True
>>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0])
>>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20
>>> v0[3] = 1
>>> v1 = numpy.dot(P, v0)
>>> numpy.allclose(v1[1], v0[1])
True
>>> numpy.allclose(v1[0], 3-v1[1])
True

quaternion_about_axis

transforms3d._gohlketransforms.quaternion_about_axis(angle, axis)

Return quaternion for rotation about axis.

>>> q = quaternion_about_axis(0.123, [1, 0, 0])
>>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0])
True

quaternion_conjugate

transforms3d._gohlketransforms.quaternion_conjugate(quaternion)

Return conjugate of quaternion.

>>> q0 = random_quaternion()
>>> q1 = quaternion_conjugate(q0)
>>> q1[0] == q0[0] and all(q1[1:] == -q0[1:])
True

quaternion_from_euler

transforms3d._gohlketransforms.quaternion_from_euler(ai, aj, ak, axes='sxyz')

Return quaternion from Euler angles and axis sequence.

ai, aj, ak : Euler’s roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple

>>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
>>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435])
True

quaternion_from_matrix

transforms3d._gohlketransforms.quaternion_from_matrix(matrix, isprecise=False)

Return quaternion from rotation matrix.

If isprecise is True, the input matrix is assumed to be a precise rotation matrix and a faster algorithm is used.

>>> q = quaternion_from_matrix(numpy.identity(4), True)
>>> numpy.allclose(q, [1, 0, 0, 0])
True
>>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
>>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
True
>>> R = rotation_matrix(0.123, (1, 2, 3))
>>> q = quaternion_from_matrix(R, True)
>>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
True
>>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
...      [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
True
>>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
...      [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
>>> q = quaternion_from_matrix(R)
>>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
True
>>> R = random_rotation_matrix()
>>> q = quaternion_from_matrix(R)
>>> is_same_transform(R, quaternion_matrix(q))
True
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
...                    quaternion_from_matrix(R, isprecise=True))
True
>>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
>>> is_same_quaternion(quaternion_from_matrix(R, isprecise=False),
...                    quaternion_from_matrix(R, isprecise=True))
True

quaternion_imag

transforms3d._gohlketransforms.quaternion_imag(quaternion)

Return imaginary part of quaternion.

>>> quaternion_imag([3, 0, 1, 2])
array([ 0.,  1.,  2.])

quaternion_inverse

transforms3d._gohlketransforms.quaternion_inverse(quaternion)

Return inverse of quaternion.

>>> q0 = random_quaternion()
>>> q1 = quaternion_inverse(q0)
>>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0])
True

quaternion_matrix

transforms3d._gohlketransforms.quaternion_matrix(quaternion)

Return homogeneous rotation matrix from quaternion.

>>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
>>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
True
>>> M = quaternion_matrix([1, 0, 0, 0])
>>> numpy.allclose(M, numpy.identity(4))
True
>>> M = quaternion_matrix([0, 1, 0, 0])
>>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
True

quaternion_multiply

transforms3d._gohlketransforms.quaternion_multiply(quaternion1, quaternion0)

Return multiplication of two quaternions.

>>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7])
>>> numpy.allclose(q, [28, -44, -14, 48])
True

quaternion_real

transforms3d._gohlketransforms.quaternion_real(quaternion)

Return real part of quaternion.

>>> quaternion_real([3, 0, 1, 2])
3.0

quaternion_slerp

transforms3d._gohlketransforms.quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True)

Return spherical linear interpolation between two quaternions.

>>> q0 = random_quaternion()
>>> q1 = random_quaternion()
>>> q = quaternion_slerp(q0, q1, 0)
>>> numpy.allclose(q, q0)
True
>>> q = quaternion_slerp(q0, q1, 1, 1)
>>> numpy.allclose(q, q1)
True
>>> q = quaternion_slerp(q0, q1, 0.5)
>>> angle = math.acos(numpy.dot(q0, q))
>>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or         numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle)
True

random_quaternion

transforms3d._gohlketransforms.random_quaternion(rand=None)

Return uniform random unit quaternion.

rand: array like or None

Three independent random variables that are uniformly distributed between 0 and 1.

>>> q = random_quaternion()
>>> numpy.allclose(1, vector_norm(q))
True
>>> q = random_quaternion(numpy.random.random(3))
>>> len(q.shape), q.shape[0]==4
(1, True)

random_rotation_matrix

transforms3d._gohlketransforms.random_rotation_matrix(rand=None)

Return uniform random rotation matrix.

rand: array like

Three independent random variables that are uniformly distributed between 0 and 1 for each returned quaternion.

>>> R = random_rotation_matrix()
>>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
True

random_vector

transforms3d._gohlketransforms.random_vector(size)

Return array of random doubles in the half-open interval [0.0, 1.0).

>>> v = random_vector(10000)
>>> numpy.all(v >= 0) and numpy.all(v < 1)
True
>>> v0 = random_vector(10)
>>> v1 = random_vector(10)
>>> numpy.any(v0 == v1)
False

reflection_from_matrix

transforms3d._gohlketransforms.reflection_from_matrix(matrix)

Return mirror plane point and normal vector from reflection matrix.

>>> v0 = numpy.random.random(3) - 0.5
>>> v1 = numpy.random.random(3) - 0.5
>>> M0 = reflection_matrix(v0, v1)
>>> point, normal = reflection_from_matrix(M0)
>>> M1 = reflection_matrix(point, normal)
>>> is_same_transform(M0, M1)
True

reflection_matrix

transforms3d._gohlketransforms.reflection_matrix(point, normal)

Return matrix to mirror at plane defined by point and normal vector.

>>> v0 = numpy.random.random(4) - 0.5
>>> v0[3] = 1.
>>> v1 = numpy.random.random(3) - 0.5
>>> R = reflection_matrix(v0, v1)
>>> numpy.allclose(2, numpy.trace(R))
True
>>> numpy.allclose(v0, numpy.dot(R, v0))
True
>>> v2 = v0.copy()
>>> v2[:3] += v1
>>> v3 = v0.copy()
>>> v2[:3] -= v1
>>> numpy.allclose(v2, numpy.dot(R, v3))
True

rotation_from_matrix

transforms3d._gohlketransforms.rotation_from_matrix(matrix)

Return rotation angle and axis from rotation matrix.

>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> angle, direc, point = rotation_from_matrix(R0)
>>> R1 = rotation_matrix(angle, direc, point)
>>> is_same_transform(R0, R1)
True

rotation_matrix

transforms3d._gohlketransforms.rotation_matrix(angle, direction, point=None)

Return matrix to rotate about axis defined by point and direction.

>>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0])
>>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1])
True
>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
>>> is_same_transform(R0, R1)
True
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(-angle, -direc, point)
>>> is_same_transform(R0, R1)
True
>>> I = numpy.identity(4, numpy.float64)
>>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
True
>>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2,
...                                               direc, point)))
True

scale_from_matrix

transforms3d._gohlketransforms.scale_from_matrix(matrix)

Return scaling factor, origin and direction from scaling matrix.

>>> factor = random.random() * 10 - 5
>>> origin = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> S0 = scale_matrix(factor, origin)
>>> factor, origin, direction = scale_from_matrix(S0)
>>> S1 = scale_matrix(factor, origin, direction)
>>> is_same_transform(S0, S1)
True
>>> S0 = scale_matrix(factor, origin, direct)
>>> factor, origin, direction = scale_from_matrix(S0)
>>> S1 = scale_matrix(factor, origin, direction)
>>> is_same_transform(S0, S1)
True

scale_matrix

transforms3d._gohlketransforms.scale_matrix(factor, origin=None, direction=None)

Return matrix to scale by factor around origin in direction.

Use factor -1 for point symmetry.

>>> v = (numpy.random.rand(4, 5) - 0.5) * 20
>>> v[3] = 1
>>> S = scale_matrix(-1.234)
>>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
True
>>> factor = random.random() * 10 - 5
>>> origin = numpy.random.random(3) - 0.5
>>> direct = numpy.random.random(3) - 0.5
>>> S = scale_matrix(factor, origin)
>>> S = scale_matrix(factor, origin, direct)

shear_from_matrix

transforms3d._gohlketransforms.shear_from_matrix(matrix)

Return shear angle, direction and plane from shear matrix.

>>> angle = (random.random() - 0.5) * 4*math.pi
>>> direct = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.cross(direct, numpy.random.random(3))
>>> S0 = shear_matrix(angle, direct, point, normal)
>>> angle, direct, point, normal = shear_from_matrix(S0)
>>> S1 = shear_matrix(angle, direct, point, normal)
>>> is_same_transform(S0, S1)
True

shear_matrix

transforms3d._gohlketransforms.shear_matrix(angle, direction, point, normal)

Return matrix to shear by angle along direction vector on shear plane.

The shear plane is defined by a point and normal vector. The direction vector must be orthogonal to the plane’s normal vector.

A point P is transformed by the shear matrix into P” such that the vector P-P” is parallel to the direction vector and its extent is given by the angle of P-P’-P”, where P’ is the orthogonal projection of P onto the shear plane.

>>> angle = (random.random() - 0.5) * 4*math.pi
>>> direct = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> normal = numpy.cross(direct, numpy.random.random(3))
>>> S = shear_matrix(angle, direct, point, normal)
>>> numpy.allclose(1, numpy.linalg.det(S))
True

superimposition_matrix

transforms3d._gohlketransforms.superimposition_matrix(v0, v1, scale=False, usesvd=True)

Return matrix to transform given 3D point set into second point set.

v0 and v1 are shape (3, *) or (4, *) arrays of at least 3 points.

The parameters scale and usesvd are explained in the more general affine_matrix_from_points function.

The returned matrix is a similarity or Euclidean transformation matrix. This function has a fast C implementation in transformations.c.

>>> v0 = numpy.random.rand(3, 10)
>>> M = superimposition_matrix(v0, v0)
>>> numpy.allclose(M, numpy.identity(4))
True
>>> R = random_rotation_matrix(numpy.random.random(3))
>>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]]
>>> v1 = numpy.dot(R, v0)
>>> M = superimposition_matrix(v0, v1)
>>> numpy.allclose(v1, numpy.dot(M, v0))
True
>>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
>>> v0[3] = 1
>>> v1 = numpy.dot(R, v0)
>>> M = superimposition_matrix(v0, v1)
>>> numpy.allclose(v1, numpy.dot(M, v0))
True
>>> S = scale_matrix(random.random())
>>> T = translation_matrix(numpy.random.random(3)-0.5)
>>> M = concatenate_matrices(T, R, S)
>>> v1 = numpy.dot(M, v0)
>>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1)
>>> M = superimposition_matrix(v0, v1, scale=True)
>>> numpy.allclose(v1, numpy.dot(M, v0))
True
>>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
>>> numpy.allclose(v1, numpy.dot(M, v0))
True
>>> v = numpy.empty((4, 100, 3))
>>> v[:, :, 0] = v0
>>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
>>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
True

translation_from_matrix

transforms3d._gohlketransforms.translation_from_matrix(matrix)

Return translation vector from translation matrix.

>>> v0 = numpy.random.random(3) - 0.5
>>> v1 = translation_from_matrix(translation_matrix(v0))
>>> numpy.allclose(v0, v1)
True

translation_matrix

transforms3d._gohlketransforms.translation_matrix(direction)

Return matrix to translate by direction vector.

>>> v = numpy.random.random(3) - 0.5
>>> numpy.allclose(v, translation_matrix(v)[:3, 3])
True

unit_vector

transforms3d._gohlketransforms.unit_vector(data, axis=None, out=None)

Return ndarray normalized by length, i.e. Euclidean norm, along axis.

>>> v0 = numpy.random.random(3)
>>> v1 = unit_vector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = unit_vector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = unit_vector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3))
>>> unit_vector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(unit_vector([]))
[]
>>> list(unit_vector([1]))
[1.0]

vector_norm

transforms3d._gohlketransforms.vector_norm(data, axis=None, out=None)

Return length, i.e. Euclidean norm, of ndarray along axis.

>>> v = numpy.random.random(3)
>>> n = vector_norm(v)
>>> numpy.allclose(n, numpy.linalg.norm(v))
True
>>> v = numpy.random.rand(6, 5, 3)
>>> n = vector_norm(v, axis=-1)
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
True
>>> n = vector_norm(v, axis=1)
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
True
>>> v = numpy.random.rand(5, 4, 3)
>>> n = numpy.empty((5, 3))
>>> vector_norm(v, axis=1, out=n)
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
True
>>> vector_norm([])
0.0
>>> vector_norm([1])
1.0

vector_product

transforms3d._gohlketransforms.vector_product(v0, v1, axis=0)

Return vector perpendicular to vectors.

>>> v = vector_product([2, 0, 0], [0, 3, 0])
>>> numpy.allclose(v, [0, 0, 6])
True
>>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
>>> v1 = [[3], [0], [0]]
>>> v = vector_product(v0, v1)
>>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]])
True
>>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
>>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
>>> v = vector_product(v0, v1, axis=1)
>>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]])
True